Multi-Task Curriculum Transfer Deep Learning of Clothing Attributes

10/12/2016
by   Qi Dong, et al.
0

Recognising detailed clothing characteristics (fine-grained attributes) in unconstrained images of people in-the-wild is a challenging task for computer vision, especially when there is only limited training data from the wild whilst most data available for model learning are captured in well-controlled environments using fashion models (well lit, no background clutter, frontal view, high-resolution). In this work, we develop a deep learning framework capable of model transfer learning from well-controlled shop clothing images collected from web retailers to in-the-wild images from the street. Specifically, we formulate a novel Multi-Task Curriculum Transfer (MTCT) deep learning method to explore multiple sources of different types of web annotations with multi-labelled fine-grained attributes. Our multi-task loss function is designed to extract more discriminative representations in training by jointly learning all attributes, and our curriculum strategy exploits the staged easy-to-complex transfer learning motivated by cognitive studies. We demonstrate the advantages of the MTCT model over the state-of-the-art methods on the X-Domain benchmark, a large scale clothing attribute dataset. Moreover, we show that the MTCT model has a notable advantage over contemporary models when the training data size is small.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro