Multimodal Neural Network For Demand Forecasting
Demand forecasting applications have immensely benefited from the state-of-the-art Deep Learning methods used for time series forecasting. Traditional uni-modal models are predominantly seasonality driven which attempt to model the demand as a function of historic sales along with information on holidays and promotional events. However, accurate and robust sales forecasting calls for accommodating multiple other factors, such as natural calamities, pandemics, elections, etc., impacting the demand for products and product categories in general. We propose a multi-modal sales forecasting network that combines real-life events from news articles with traditional data such as historical sales and holiday information. Further, we fuse information from general product trends published by Google trends. Empirical results show statistically significant improvements in the SMAPE error metric with an average improvement of 7.37 forecasting techniques on a real-world supermarket dataset.
READ FULL TEXT