Multimodal price prediction
Valorization is one of the most heated discussions in the business community, and commodities valorization is one subset in this task. Features of a product is an essential characteristic in valorization and features are categorized into two classes: graphical and non-graphical. Nowadays, the value of products is measured by price. The goal of this research is to achieve an arrangement to predict the price of a product based on specifications of that. We propose five deep learning models to predict the price range of a product, one unimodal and four multimodal systems. The multimodal methods predict based on the image and non-graphical specification of product. As a platform to evaluate the methods, a cellphones dataset has been gathered from GSMArena. In proposed methods, convolutional neural network is an infrastructure. The experimental results show 88.3
READ FULL TEXT