Multivariate, Multi-step, and Spatiotemporal Traffic Prediction for NextG Network Slicing under SLA Constraints

09/07/2023
by   Evren Tuna, et al.
0

This study presents a spatiotemporal traffic prediction approach for NextG mobile networks, ensuring the service-level agreements (SLAs) of each network slice. Our approach is multivariate, multi-step, and spatiotemporal. Leveraging 20 radio access network (RAN) features, peak traffic hour data, and mobility-based clustering, we propose a parametric SLA-based loss function to guarantee an SLA violation rate. We focus on single-cell, multi-cell, and slice-based prediction approaches and present a detailed comparative analysis of their performances, strengths, and limitations. First, we address the application of single-cell and multi-cell training architectures. While single-cell training offers individual cell-level prediction, multi-cell training involves training a model using traffic from multiple cells from the same or different base stations. We show that the single-cell approach outperforms the multi-cell approach and results in test loss improvements of 11.4 MAE-based models, respectively. Next, we explore slice-based traffic prediction. We present single-slice and multi-slice methods for slice-based downlink traffic volume prediction, arguing that multi-slice prediction offers a more accurate forecast. The slice-based model we introduce offers substantial test loss improvements of 28.2 and 55.6 the baseline MAE-based model, respectively.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset