NBC2: Multichannel Speech Separation with Revised Narrow-band Conformer

12/05/2022
by   Changsheng Quan, et al.
0

This work proposes a multichannel narrow-band speech separation network. In the short-time Fourier transform (STFT) domain, the proposed network processes each frequency independently, and all frequencies use a shared network. For each frequency, the network performs end-to-end speech separation, namely taking as input the STFT coefficients of microphone signals, and predicting the separated STFT coefficients of multiple speakers. The proposed network learns to cluster the frame-wise spatial/steering vectors that belong to different speakers. It is mainly composed of three components. First, a self-attention network. Clustering of spatial vectors shares a similar principle with the self-attention mechanism in the sense of computing the similarity of vectors and then aggregating similar vectors. Second, a convolutional feed-forward network. The convolutional layers are employed for signal smoothing and reverberation processing. Third, a novel hidden-layer normalization method, i.e. group batch normalization (GBN), is especially designed for the proposed narrow-band network to maintain the distribution of hidden units over frequencies. Overall, the proposed network is named NBC2, as it is a revised version of our previous NBC (narrow-band conformer) network. Experiments show that 1) the proposed network outperforms other state-of-the-art methods by a large margin, 2) the proposed GBN improves the signal-to-distortion ratio by 3 dB, relative to other normalization methods, such as batch/layer/group normalization, 3) the proposed narrow-band network is spectrum-agnostic, as it does not learn spectral patterns, and 4) the proposed network is indeed performing frame clustering (demonstrated by the attention maps).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset