NCVis: Noise Contrastive Approach for Scalable Visualization

01/30/2020
by   Aleksandr Artemenkov, et al.
14

Modern methods for data visualization via dimensionality reduction, such as t-SNE, usually have performance issues that prohibit their application to large amounts of high-dimensional data. In this work, we propose NCVis – a high-performance dimensionality reduction method built on a sound statistical basis of noise contrastive estimation. We show that NCVis outperforms state-of-the-art techniques in terms of speed while preserving the representation quality of other methods. In particular, the proposed approach successfully proceeds a large dataset of more than 1 million news headlines in several minutes and presents the underlying structure in a human-readable way. Moreover, it provides results consistent with classical methods like t-SNE on more straightforward datasets like images of hand-written digits. We believe that the broader usage of such software can significantly simplify the large-scale data analysis and lower the entry barrier to this area.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro