Near-optimal Online Algorithms for Joint Pricing and Scheduling in EV Charging Networks
With the rapid acceleration of transportation electrification, public charging stations are becoming vital infrastructure in a smart sustainable city to provide on-demand electric vehicle (EV) charging services. As more consumers seek to utilize public charging services, the pricing and scheduling of such services will become vital, complementary tools to mediate competition for charging resources. However, determining the right prices to charge is difficult due to the online nature of EV arrivals. This paper studies a joint pricing and scheduling problem for the operator of EV charging networks with limited charging capacity and time-varying energy cost. Upon receiving a charging request, the operator offers a price, and the EV decides whether to admit the offer based on its own value and the posted price. The operator then schedules the real-time charging process to satisfy the charging request if the EV admits the offer. We propose an online pricing algorithm that can determine the posted price and EV charging schedule to maximize social welfare, i.e., the total value of EVs minus the energy cost of charging stations. Theoretically, we prove the devised algorithm can achieve the order-optimal competitive ratio under the competitive analysis framework. Practically, we show the empirical performance of our algorithm outperforms other benchmark algorithms in experiments using real EV charging data.
READ FULL TEXT