Nearest Neighbor Machine Translation

10/01/2020
by   Urvashi Khandelwal, et al.
0

We introduce k-nearest-neighbor machine translation (kNN-MT), which predicts tokens with a nearest neighbor classifier over a large datastore of cached examples, using representations from a neural translation model for similarity search. This approach requires no additional training and scales to give the decoder direct access to billions of examples at test time, resulting in a highly expressive model that consistently improves performance across many settings. Simply adding nearest neighbor search improves a state-of-the-art German-English translation model by 1.5 BLEU. kNN-MT allows a single model to be adapted to diverse domains by using a domain-specific datastore, improving results by an average of 9.2 BLEU over zero-shot transfer, and achieving new state-of-the-art results—without training on these domains. A massively multilingual model can also be specialized for particular language pairs, with improvements of 3 BLEU for translating from English into German and Chinese. Qualitatively, kNN-MT is easily interpretable; it combines source and target context to retrieve highly relevant examples.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro