Neural Conditional Gradients

03/12/2018
by   Patrick Schramowski, et al.
0

The move from hand-designed to learned optimizers in machine learning has been quite successful for gradient-based and -free optimizers. When facing a constrained problem, however, maintaining feasibility typically requires a projection step, which might be computationally expensive and not differentiable. We show how the design of projection-free convex optimization algorithms can be cast as a learning problem based on Frank-Wolfe Networks: recurrent networks implementing the Frank-Wolfe algorithm aka. conditional gradients. This allows them to learn to exploit structure when, e.g., optimizing over rank-1 matrices. Our LSTM-learned optimizers outperform hand-designed as well learned but unconstrained ones. We demonstrate this for training support vector machines and softmax classifiers.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset