Neural Mention Detection
Mention detection is an important aspect of the annotation task and interpretation process for applications such as coreference resolution. In this work, we propose and compare three neural network-based approaches to mention detection. The first approach is based on the mention detection part of a state-of-the-art coreference resolution system; the second uses ELMo embeddings together with a bidirectional LSTM and a biaffine classifier; the third approach uses the recently introduced BERT model. Our best model (using a biaffine classifier) achieved gains of up to 1.8 percentage points on mention recall when compared with a strong baseline in a HIGH RECALL setting. The same model achieved improvements of up to 5.3 and 6.5 p.p. when compared with the best-reported mention detection F1 on thevCONLL and CRAC data sets respectively in a HIGH F1 setting. We further evaluated our models on coreference resolution by using mentions predicted by our best model in the start-of-the-art coreference systems. The enhanced model achieved absolute improvements of up to 1.7 and 0.7 p.p. when compared with the best pipeline system and the state-of-the-art end-to-end system respectively.
READ FULL TEXT