Neural Population Coding for Effective Temporal Classification

09/12/2019
by   Zihan Pan, et al.
0

Neural encoding plays an important role in faithfully describing the temporally rich patterns, whose instances include human speech and environmental sounds. For tasks that involve classifying such spatio-temporal patterns with the Spiking Neural Networks (SNNs), how these patterns are encoded directly influence the difficulty of the task. In this paper, we compare several existing temporal and population coding schemes and evaluate them on both speech (TIDIGITS) and sound (RWCP) datasets. We show that, with population neural codings, the encoded patterns are linearly separable using the Support Vector Machine (SVM). We note that the population neural codings effectively project the temporal information onto the spatial domain, thus improving linear separability in the spatial dimension, achieving an accuracy of 95% and 100% for TIDIGITS and RWCP datasets classified using the SVM, respectively. This observation suggests that an effective neural coding scheme greatly simplifies the classification problem such that a simple linear classifier would suffice. The above datasets are then classified using the Tempotron, an SNN-based classifier. SNN classification results agree with the SVM findings that population neural codings help to improve classification accuracy. Hence, other than the learning algorithm, effective neural encoding is just as important as an SNN designed to recognize spatio-temporal patterns. It is an often neglected but powerful abstraction that deserves further study.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset