Neural Summarization by Extracting Sentences and Words

03/23/2016
by   Jianpeng Cheng, et al.
0

Traditional approaches to extractive summarization rely heavily on human-engineered features. In this work we propose a data-driven approach based on neural networks and continuous sentence features. We develop a general framework for single-document summarization composed of a hierarchical document encoder and an attention-based extractor. This architecture allows us to develop different classes of summarization models which can extract sentences or words. We train our models on large scale corpora containing hundreds of thousands of document-summary pairs. Experimental results on two summarization datasets demonstrate that our models obtain results comparable to the state of the art without any access to linguistic annotation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset