Neuro-Symbolic Forward Reasoning

10/18/2021
by   Hikaru Shindo, et al.
52

Reasoning is an essential part of human intelligence and thus has been a long-standing goal in artificial intelligence research. With the recent success of deep learning, incorporating reasoning with deep learning systems, i.e., neuro-symbolic AI has become a major field of interest. We propose the Neuro-Symbolic Forward Reasoner (NSFR), a new approach for reasoning tasks taking advantage of differentiable forward-chaining using first-order logic. The key idea is to combine differentiable forward-chaining reasoning with object-centric (deep) learning. Differentiable forward-chaining reasoning computes logical entailments smoothly, i.e., it deduces new facts from given facts and rules in a differentiable manner. The object-centric learning approach factorizes raw inputs into representations in terms of objects. Thus, it allows us to provide a consistent framework to perform the forward-chaining inference from raw inputs. NSFR factorizes the raw inputs into the object-centric representations, converts them into probabilistic ground atoms, and finally performs differentiable forward-chaining inference using weighted rules for inference. Our comprehensive experimental evaluations on object-centric reasoning data sets, 2D Kandinsky patterns and 3D CLEVR-Hans, and a variety of tasks show the effectiveness and advantage of our approach.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro