New Dependencies of Hierarchies in Polynomial Optimization
We compare four key hierarchies for solving Constrained Polynomial Optimization Problems (CPOP): Sum of Squares (SOS), Sum of Diagonally Dominant Polynomials (SDSOS), Sum of Nonnegative Circuits (SONC), and the Sherali Adams (SA) hierarchies. We prove a collection of dependencies among these hierarchies both for general CPOPs and for optimization problems on the Boolean hypercube. Key results include for the general case that the SONC and SOS hierarchy are polynomially incomparable, while SDSOS is contained in SONC. A direct consequence is the non-existence of a Putinar-like Positivstellensatz for SDSOS. On the Boolean hypercube, we show as a main result that Schmüdgen-like versions of the hierarchies SDSOS*, SONC*, and SA* are polynomially equivalent. Moreover, we show that SA* is contained in any Schmüdgen-like hierarchy that provides a O(n) degree bound.
READ FULL TEXT