New Risk Bounds for 2D Total Variation Denoising

02/04/2019
by   Sabyasachi Chatterjee, et al.
0

2D Total Variation Denoising (TVD) is a widely used technique for image denoising. It is also an important non parametric regression method for estimating functions with heterogenous smoothness. Recent results have shown the TVD estimator to be nearly minimax rate optimal for the class of functions with bounded variation. In this paper, we complement these worst case guarantees by investigating the adaptivity of the TVD estimator to functions which are piecewise constant on axis aligned rectangles. We rigorously show that, when the truth is piecewise constant, the ideally tuned TVD estimator performs better than in the worst case. We also study the issue of choosing the tuning parameter. In particular, we propose a fully data driven version of the TVD estimator which enjoys similar worst case risk guarantees as the ideally tuned TVD estimator.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset