Non-decimated Complex Wavelet Spectral Tools with Applications
In this paper we propose spectral tools based on non-decimated complex wavelet transforms implemented by their matrix formulation. This non-decimated complex wavelet spectra utilizes both real and imaginary parts of complex-valued wavelet coefficients via their modulus and phases. A structural redundancy in non-decimated wavelets and a componential redundancy in complex wavelets act in a synergy when extracting wavelet-based informative descriptors. In particular, we suggest an improved way of separating signals and images based on their scaling indices in terms of spectral slopes and information contained in the phase in order to improve performance of classification. We show that performance of the proposed method is significantly improved when compared with procedures based on standard versions of wavelet transforms or on real-valued wavelets. It is also worth mentioning that the matrix-based non-decimated wavelet transform can handle signals of an arbitrary size and in 2-D case, rectangular images of possibly different and non-dyadic dimensions. This is in contrast to the standard wavelet transforms where algorithms for handling objects of non-dyadic dimensions requires either data preprocessing or customized algorithm adjustments. To demonstrate the use of defined spectral methodology we provide two examples of application on real-data problems: classification of visual acuity using scaling in pupil diameter dynamic in time and diagnostic and classification of digital mammogram images using the fractality of digitized images of the background tissue. The proposed tools are contrasted with the traditional wavelet based counterparts.
READ FULL TEXT