Non-intrusive reduced-order models for parametric partial differential equations via data-driven operator inference

10/14/2021
by   Shane A. McQuarrie, et al.
0

This work formulates a new approach to reduced modeling of parameterized, time-dependent partial differential equations (PDEs). The method employs Operator Inference, a scientific machine learning framework combining data-driven learning and physics-based modeling. The parametric structure of the governing equations is embedded directly into the reduced-order model, and parameterized reduced-order operators are learned via a data-driven linear regression problem. The result is a reduced-order model that can be solved rapidly to map parameter values to approximate PDE solutions. Such parameterized reduced-order models may be used as physics-based surrogates for uncertainty quantification and inverse problems that require many forward solves of parametric PDEs. Numerical issues such as well-posedness and the need for appropriate regularization in the learning problem are considered, and an algorithm for hyperparameter selection is presented. The method is illustrated for a parametric heat equation and demonstrated for the FitzHugh-Nagumo neuron model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset