Non-parametric Probabilistic Load Flow using Gaussian Process Learning
In this paper, we propose a non-parametric probabilistic load flow (NP-PLF) technique based on Gaussian process (GP) learning. The technique can provide "semi-explicit" power flow solutions by implementing learning step and testing step. The proposed NP-PLF leverages upon GP upper confidence bound (GP-UCB) sampling algorithm. The salient features of this NP-PLF method are: i) applicable for power flow problem having power injection uncertainty with unknown class of distribution; ii) providing probabilistic learning bound (PLB) provides control over the error and convergence; iii) capable of handling intermittent distributed generation as well as load uncertainties; and iv) applicable to both balanced and unbalanced power flow with different type and size of systems. The simulation results performed on IEEE 30-bus and IEEE 118-bus system show that the proposed method is able to learn the state variable function in the input subspace using a small number of training samples. Further, the testing with different distributions indicates that more complete statistical information can be obtained on probabilistic power flow problem using the proposed method.
READ FULL TEXT