Non-Sequential Theory of Distributed Systems

04/15/2019
by   Benedikt Bollig, et al.
0

These lecture notes cover basic automata-theoretic concepts and logical formalisms for the modeling and verification of concurrent and distributed systems. Many of these concepts naturally extend the classical automata and logics over words, which provide a framework for modeling sequential systems. A distributed system, on the other hand, combines several (finite or recursive) processes, and will therefore be modeled as a collection of (finite or pushdown, respectively) automata. A crucial parameter of a distributed system is the kind of interaction that is allowed between processes. In this lecture, we focus on the message-passing paradigm. In general, communication in a distributed system creates complex dependencies between events, which are hidden when using a sequential, operational semantics. The approach taken here is based on a faithful preservation of the dependencies of concurrent events. That is, an execution of a system is modeled as a partial order, or graph, rather than a sequence of events.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset