Nonparametric estimation for interacting particle systems : McKean-Vlasov models
We consider a system of N interacting particles, governed by transport and diffusion, that converges in a mean-field limit to the solution of a McKean-Vlasov equation. From the observation of a trajectory of the system over a fixed time horizon, we investigate nonparametric estimation of the solution of the associated nonlinear Fokker-Planck equation, together with the drift term that controls the interactions, in a large population limit N →∞. We build data-driven kernel estimators and establish oracle inequalities, following Lepski's principle. Our results are based on a new Bernstein concentration inequality in McKean-Vlasov models for the empirical measure around its mean, possibly of independent interest. We obtain adaptive estimators over anisotropic Hölder smoothness classes built upon the solution map of the Fokker-Planck equation, and prove their optimality in a minimax sense. In the specific case of the Vlasov model, we derive an estimator of the interaction potential and establish its consistency.
READ FULL TEXT