Normative Modeling of Neuroimaging Data using Scalable Multi-Task Gaussian Processes

06/04/2018
by   Seyed Mostafa Kia, et al.
0

Normative modeling has recently been proposed as an alternative for the case-control approach in modeling heterogeneity within clinical cohorts. Normative modeling is based on single-output Gaussian process regression that provides coherent estimates of uncertainty required by the method but does not consider spatial covariance structure. Here, we introduce a scalable multi-task Gaussian process regression (S-MTGPR) approach to address this problem. To this end, we exploit a combination of a low-rank approximation of the spatial covariance matrix with algebraic properties of Kronecker product in order to reduce the computational complexity of Gaussian process regression in high-dimensional output spaces. On a public fMRI dataset, we show that S-MTGPR: 1) leads to substantial computational improvements that allow us to estimate normative models for high-dimensional fMRI data whilst accounting for spatial structure in data; 2) by modeling both spatial and across-sample variances, it provides higher sensitivity in novelty detection scenarios.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro