ODG-Q: Robust Quantization via Online Domain Generalization
Quantizing neural networks to low-bitwidth is important for model deployment on resource-limited edge hardware. Although a quantized network has a smaller model size and memory footprint, it is fragile to adversarial attacks. However, few methods study the robustness and training efficiency of quantized networks. To this end, we propose a new method by recasting robust quantization as an online domain generalization problem, termed ODG-Q, which generates diverse adversarial data at a low cost during training. ODG-Q consistently outperforms existing works against various adversarial attacks. For example, on CIFAR-10 dataset, ODG-Q achieves 49.2 attacks and 21.7 with a training cost similar to that of natural training (viz. without adversaries). To our best knowledge, this work is the first work that trains both quantized and binary neural networks on ImageNet that consistently improve robustness under different attacks. We also provide a theoretical insight of ODG-Q that accounts for the bound of model risk on attacked data.
READ FULL TEXT