On Complexity of Computing Bottleneck and Lexicographic Optimal Cycles in a Homology Class
Homology features of spaces which appear in applications, for instance 3D meshes, are among the most important topological properties of these objects. Given a non-trivial cycle in a homology class, we consider the problem of computing a representative in that homology class which is optimal. We study two measures of optimality, namely, the lexicographic order of cycles (the lex-optimal cycle) and the bottleneck norm (a bottleneck-optimal cycle). We give a simple algorithm for computing the lex-optimal cycle for a 1-homology lass in a closed orientable surface. In contrast to this, our main result is that, in the case of 3-Manifolds of size n^2 in the Euclidean 3-space, the problem of finding a bottleneck optimal cycle cannot be solved more efficiently than solving a system of linear equations with an n × n sparse matrix. From this reduction, we deduce several hardness results. Most notably, we show that for 3-manifolds given as a subset of the 3-space of size n^2, persistent homology computations are at least as hard as rank computation (for sparse matrices) while ordinary homology computations can be done in O(n^2 log n) time. This is the first such distinction between these two computations. Moreover, it follows that the same disparity exists between the height persistent homology computation and general sub-level set persistent homology computation for simplicial complexes in the 3-space.
READ FULL TEXT