On Connecting Stochastic Gradient MCMC and Differential Privacy

12/25/2017
by   Bai Li, et al.
0

Significant success has been realized recently on applying machine learning to real-world applications. There have also been corresponding concerns on the privacy of training data, which relates to data security and confidentiality issues. Differential privacy provides a principled and rigorous privacy guarantee on machine learning models. While it is common to design a model satisfying a required differential-privacy property by injecting noise, it is generally hard to balance the trade-off between privacy and utility. We show that stochastic gradient Markov chain Monte Carlo (SG-MCMC) -- a class of scalable Bayesian posterior sampling algorithms proposed recently -- satisfies strong differential privacy with carefully chosen step sizes. We develop theory on the performance of the proposed differentially-private SG-MCMC method. We conduct experiments to support our analysis and show that a standard SG-MCMC sampler without any modification (under a default setting) can reach state-of-the-art performance in terms of both privacy and utility on Bayesian learning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro