On Efficient Transformer and Image Pre-training for Low-level Vision
Pre-training has marked numerous state of the arts in high-level computer vision, but few attempts have ever been made to investigate how pre-training acts in image processing systems. In this paper, we present an in-depth study of image pre-training. To conduct this study on solid ground with practical value in mind, we first propose a generic, cost-effective Transformer-based framework for image processing. It yields highly competitive performance across a range of low-level tasks, though under constrained parameters and computational complexity. Then, based on this framework, we design a whole set of principled evaluation tools to seriously and comprehensively diagnose image pre-training in different tasks, and uncover its effects on internal network representations. We find pre-training plays strikingly different roles in low-level tasks. For example, pre-training introduces more local information to higher layers in super-resolution (SR), yielding significant performance gains, while pre-training hardly affects internal feature representations in denoising, resulting in a little gain. Further, we explore different methods of pre-training, revealing that multi-task pre-training is more effective and data-efficient. All codes and models will be released at https://github.com/fenglinglwb/EDT.
READ FULL TEXT