On Equivalence of Martingale Tail Bounds and Deterministic Regret Inequalities

10/13/2015
by   Alexander Rakhlin, et al.
0

We study an equivalence of (i) deterministic pathwise statements appearing in the online learning literature (termed regret bounds), (ii) high-probability tail bounds for the supremum of a collection of martingales (of a specific form arising from uniform laws of large numbers for martingales), and (iii) in-expectation bounds for the supremum. By virtue of the equivalence, we prove exponential tail bounds for norms of Banach space valued martingales via deterministic regret bounds for the online mirror descent algorithm with an adaptive step size. We extend these results beyond the linear structure of the Banach space: we define a notion of martingale type for general classes of real-valued functions and show its equivalence (up to a logarithmic factor) to various sequential complexities of the class (in particular, the sequential Rademacher complexity and its offset version). For classes with the general martingale type 2, we exhibit a finer notion of variation that allows partial adaptation to the function indexing the martingale. Our proof technique rests on sequential symmetrization and on certifying the existence of regret minimization strategies for certain online prediction problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset