On Practical Robust Reinforcement Learning: Practical Uncertainty Set and Double-Agent Algorithm
We study a robust reinforcement learning (RL) with model uncertainty. Given nominal Markov decision process (N-MDP) that generate samples for training, an uncertainty set is defined, which contains some perturbed MDPs from N-MDP for the purpose of reflecting potential mismatched between training (i.e., N-MDP) and testing environments. The objective of robust RL is to learn a robust policy that optimizes the worst-case performance over an uncertainty set. In this paper, we propose a new uncertainty set containing more realistic MDPs than the existing ones. For this uncertainty set, we present a robust RL algorithm (named ARQ-Learning) for tabular case and characterize its finite-time error bound. Also, it is proved that ARQ-Learning converges as fast as Q-Learning and the state-of-the-art robust Q-Learning while ensuring better robustness to real-world applications. Next, we propose pessimistic agent that efficiently tackles the key bottleneck for the extension of ARQ-Learning into the case with larger or continuous state spaces. Incorporating the idea of pessimistic agents into the famous RL algorithms such as Q-Learning, deep-Q network (DQN), and deep deterministic policy gradient (DDPG), we present PRQ-Learning, PR-DQN, and PR-DDPG, respectively. Noticeably, the proposed idea can be immediately applied to other model-free RL algorithms (e.g., soft actor critic). Via experiments, we demonstrate the superiority of our algorithms on various RL applications with model uncertainty.
READ FULL TEXT