On the Capacity of Private Nonlinear Computation for Replicated Databases

07/04/2023
by   Sarah A. Obead, et al.
0

We consider the problem of private computation (PC) in a distributed storage system. In such a setting a user wishes to compute a function of f messages replicated across n noncolluding databases, while revealing no information about the desired function to the databases. We provide an information-theoretically accurate achievable PC rate, which is the ratio of the smallest desired amount of information and the total amount of downloaded information, for the scenario of nonlinear computation. For a large message size the rate equals the PC capacity, i.e., the maximum achievable PC rate, when the candidate functions are the f independent messages and one arbitrary nonlinear function of these. When the number of messages grows, the PC rate approaches an outer bound on the PC capacity. As a special case, we consider private monomial computation (PMC) and numerically compare the achievable PMC rate to the outer bound for a finite number of messages.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset