On the Complexity of Value Iteration

07/13/2018
by   Nikhil Balaji, et al.
0

Value iteration is a fundamental algorithm for solving Markov Decision Processes (MDPs). It computes the maximal n-step payoff by iterating n times a recurrence equation which is naturally associated to the MDP. At the same time, value iteration provides a policy for the MDP that is optimal on a given finite horizon n. In this paper, we settle the computational complexity of value iteration. We show that, given a horizon n in binary and an MDP, computing an optimal policy is EXP-complete, thus resolving an open problem that goes back to the seminal 1987 paper on the complexity of MDPs by Papadimitriou and Tsitsiklis. As a stepping stone, we show that it is EXP-complete to compute the n-fold iteration (with n in binary) of a function given by a straight-line program over the integers with and + as operators.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset