On the energy stability of Strang-splitting for Cahn-Hilliard
We consider a Strang-type second order operator-splitting discretization for the Cahn-Hilliard equation. We introduce a new theoretical framework and prove uniform energy stability of the numerical solution and persistence of all higher Sobolev norms. This is the first strong stability result for second order operator-splitting methods for the Cahn-Hilliard equation. In particular we settle several long-standing open issues in the work of Cheng, Kurganov, Qu and Tang <cit.>.
READ FULL TEXT