On The Equivalence of Tries and Dendrograms - Efficient Hierarchical Clustering of Traffic Data

10/12/2018
by   Chia-Tung Kuo, et al.
0

The widespread use of GPS-enabled devices generates voluminous and continuous amounts of traffic data but analyzing such data for interpretable and actionable insights poses challenges. A hierarchical clustering of the trips has many uses such as discovering shortest paths, common routes and often traversed areas. However, hierarchical clustering typically has time complexity of O(n^2 n) where n is the number of instances, and is difficult to scale to large data sets associated with GPS data. Furthermore, incremental hierarchical clustering is still a developing area. Prefix trees (also called tries) can be efficiently constructed and updated in linear time (in n). We show how a specially constructed trie can compactly store the trips and further show this trie is equivalent to a dendrogram that would have been built by classic agglomerative hierarchical algorithms using a specific distance metric. This allows creating hierarchical clusterings of GPS trip data and updating this hierarchy in linear time. interpret the structure as clusterings of differing granularity as one progresses down the tree. We demonstrate the usefulness of our proposed approach on a real world data set of half a million taxis' GPS traces, well beyond the capabilities of agglomerative clustering methods. Our work is not limited to trip data and can be used with other data with a string representation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset