On the Global Convergence of Gradient Descent for multi-layer ResNets in the mean-field regime

10/06/2021
by   Zhiyan Ding, et al.
0

Finding the optimal configuration of parameters in ResNet is a nonconvex minimization problem, but first-order methods nevertheless find the global optimum in the overparameterized regime. We study this phenomenon with mean-field analysis, by translating the training process of ResNet to a gradient-flow partial differential equation (PDE) and examining the convergence properties of this limiting process. The activation function is assumed to be 2-homogeneous or partially 1-homogeneous; the regularized ReLU satisfies the latter condition. We show that if the ResNet is sufficiently large, with depth and width depending algebraically on the accuracy and confidence levels, first-order optimization methods can find global minimizers that fit the training data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro