On the Online Frank-Wolfe Algorithms for Convex and Non-convex Optimizations

10/05/2015
by   Jean Lafond, et al.
0

In this paper, the online variants of the classical Frank-Wolfe algorithm are considered. We consider minimizing the regret with a stochastic cost. The online algorithms only require simple iterative updates and a non-adaptive step size rule, in contrast to the hybrid schemes commonly considered in the literature. Several new results are derived for convex and non-convex losses. With a strongly convex stochastic cost and when the optimal solution lies in the interior of the constraint set or the constraint set is a polytope, the regret bound and anytime optimality are shown to be O( ^3 T / T ) and O( ^2 T / T), respectively, where T is the number of rounds played. These results are based on an improved analysis on the stochastic Frank-Wolfe algorithms. Moreover, the online algorithms are shown to converge even when the loss is non-convex, i.e., the algorithms find a stationary point to the time-varying/stochastic loss at a rate of O(√(1/T)). Numerical experiments on realistic data sets are presented to support our theoretical claims.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro