On the Packet Decoding Delay of Linear Network Coded Wireless Broadcast

02/08/2018
by   Mingchao Yu, et al.
0

We apply linear network coding (LNC) to broadcast a block of data packets from one sender to a set of receivers via lossy wireless channels, assuming each receiver already possesses a subset of these packets and wants the rest. We aim to characterize the average packet decoding delay (APDD), which reflects how soon each individual data packet can be decoded by each receiver on average, and to minimize it while achieving optimal throughput. To this end, we first derive closed-form lower bounds on the expected APDD of all LNC techniques under random packet erasures. We then prove that these bounds are NP-hard to achieve and, thus, that APDD minimization is an NP-hard problem. We then study the performance of some existing LNC techniques, including random linear network coding (RLNC) and instantly decodable network coding (IDNC). We proved that all throughput-optimal LNC techniques can approximate the minimum expected APDD with a ratio between 4/3 and 2. In particular, the ratio of RLNC is exactly 2. We then prove that all IDNC techniques are only heuristics in terms of throughput optimization and cannot guarantee an APDD approximation ratio for at least a subset of the receivers. Finally, we propose hyper-graphic linear network coding (HLNC), a novel throughput-optimal and APDD-approximating LNC technique based on a hypergraph model of receivers' packet reception state. We implement it under different availability of receiver feedback, and numerically compare its performance with RLNC and a heuristic general IDNC technique. The results show that the APDD performance of HLNC is better under all tested system settings, even if receiver feedback is only collected intermittently.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset