On the Persistence of Clustering Solutions and True Number of Clusters in a Dataset

10/31/2018
by   Amber Srivastava, et al.
0

Typically clustering algorithms provide clustering solutions with prespecified number of clusters. The lack of a priori knowledge on the true number of underlying clusters in the dataset makes it important to have a metric to compare the clustering solutions with different number of clusters. This article quantifies a notion of persistence of clustering solutions that enables comparing solutions with different number of clusters. The persistence relates to the range of data-resolution scales over which a clustering solution persists; it is quantified in terms of the maximum over two-norms of all the associated cluster-covariance matrices. Thus we associate a persistence value for each element in a set of clustering solutions with different number of clusters. We show that the datasets where natural clusters are a priori known, the clustering solutions that identify the natural clusters are most persistent - in this way, this notion can be used to identify solutions with true number of clusters. Detailed experiments on a variety of standard and synthetic datasets demonstrate that the proposed persistence-based indicator outperforms the existing approaches, such as, gap-statistic method, X-means, G-means, PG-means, dip-means algorithms and information-theoretic method, in accurately identifying the clustering solutions with true number of clusters. Interestingly, our method can be explained in terms of the phase-transition phenomenon in the deterministic annealing algorithm, where the number of distinct cluster centers changes (bifurcates) with respect to an annealing parameter.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset