On the relationship between the structural and socioacademic communities of a coauthorship network

01/15/2008
by   Marko A. Rodriguez, et al.
0

This article presents a study that compares detected structural communities in a coauthorship network to the socioacademic characteristics of the scholars that compose the network. The coauthorship network was created from the bibliographic record of a multi-institution, interdisciplinary research group focused on the study of sensor networks and wireless communication. Four different community detection algorithms were employed to assign a structural community to each scholar in the network: leading eigenvector, walktrap, edge betweenness and spinglass. Socioacademic characteristics were gathered from the scholars and include such information as their academic department, academic affiliation, country of origin, and academic position. A Pearson's χ^2 test, with a simulated Monte Carlo, revealed that structural communities best represent groupings of individuals working in the same academic department and at the same institution. A generalization of this result suggests that, even in interdisciplinary, multi-institutional research groups, coauthorship is primarily driven by departmental and institutional affiliation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro