On the Risk of Minimum-Norm Interpolants and Restricted Lower Isometry of Kernels

08/27/2019
by   Tengyuan Liang, et al.
6

We study the risk of minimum-norm interpolants of data in a Reproducing Kernel Hilbert Space where kernel is defined as a function of the inner product. Our upper bounds on the risk are of a multiple-descent shape for the various scalings of d = n^α, α∈(0,1), for the input dimension d and sample size n. At the heart of our analysis is a study of spectral properties of the random kernel matrix restricted to a filtration of eigen-spaces of the population covariance operator. Since gradient flow on appropriately initialized wide neural networks converges to a minimum-norm interpolant, the analysis also yields estimation guarantees for these models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro