On the Stable Resolution Limit of Total Variation Regularization for Spike Deconvolution

10/03/2019
by   Maxime Ferreira Da Costa, et al.
0

The stability of spike deconvolution, which aims at recovering point sources from their convolution with a point spread function (PSF), is known to be related to the separation between those sources. When the observations are noisy, it is critical to ensure support stability, where the deconvolution does not lead to spurious, or oppositely, missing estimates of the point sources. In this paper, we study the resolution limit of stably recovering the support of two closely located point sources using the Beurling-LASSO estimator, which is a convex optimization approach based on total variation regularization. We establish a sufficient separation criteria between the sources, depending only on the PSF, above which the Beurling-LASSO estimator is guaranteed to return a stable estimate of the point sources, with the same number of estimated elements as of the ground truth. Our result highlights the impact of PSF on the resolution limit in the noisy setting, which was not evident in previous studies of the noiseless setting.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset