On the Temporal-spatial Analysis of Estimating Urban Traffic Patterns Via GPS Trace Data of Car-hailing Vehicles

06/12/2023
by   Jiannan Mao, et al.
0

Car-hailing services have become a prominent data source for urban traffic studies. Extracting useful information from car-hailing trace data is essential for effective traffic management, while discrepancies between car-hailing vehicles and urban traffic should be considered. This paper proposes a generic framework for estimating and analyzing urban traffic patterns using car-hailing trace data. The framework consists of three layers: the data layer, the interactive software layer, and the processing method layer. By pre-processing car-hailing GPS trace data with operations such as data cutting, map matching, and trace correction, the framework generates tensor matrices that estimate traffic patterns for car-hailing vehicle flow and average road speed. An analysis block based on these matrices examines the relationships and differences between car-hailing vehicles and urban traffic patterns, which have been overlooked in previous research. Experimental results demonstrate the effectiveness of the proposed framework in examining temporal-spatial patterns of car-hailing vehicles and urban traffic. For temporal analysis, urban road traffic displays a bimodal characteristic while car-hailing flow exhibits a 'multi-peak' pattern, fluctuating significantly during holidays and thus generating a hierarchical structure. For spatial analysis, the heat maps generated from the matrices exhibit certain discrepancies, but the spatial distribution of hotspots and vehicle aggregation areas remains similar.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset