On transversality of bent hyperplane arrangements and the topological expressiveness of ReLU neural networks

08/20/2020
by   J. Elisenda Grigsby, et al.
0

Let F:R^n -> R be a feedforward ReLU neural network. It is well-known that for any choice of parameters, F is continuous and piecewise (affine) linear. We lay some foundations for a systematic investigation of how the architecture of F impacts the geometry and topology of its possible decision regions for binary classification tasks. Following the classical progression for smooth functions in differential topology, we first define the notion of a generic, transversal ReLU neural network and show that almost all ReLU networks are generic and transversal. We then define a partially-oriented linear 1-complex in the domain of F and identify properties of this complex that yield an obstruction to the existence of bounded connected components of a decision region. We use this obstruction to prove that a decision region of a generic, transversal ReLU network F: R^n -> R with a single hidden layer of dimension (n + 1) can have no more than one bounded connected component.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset