Online AUC Optimization for Sparse High-Dimensional Datasets

09/23/2020
by   Baojian Zhou, et al.
14

The Area Under the ROC Curve (AUC) is a widely used performance measure for imbalanced classification arising from many application domains where high-dimensional sparse data is abundant. In such cases, each d dimensional sample has only k non-zero features with k ≪ d, and data arrives sequentially in a streaming form. Current online AUC optimization algorithms have high per-iteration cost 𝒪(d) and usually produce non-sparse solutions in general, and hence are not suitable for handling the data challenge mentioned above. In this paper, we aim to directly optimize the AUC score for high-dimensional sparse datasets under online learning setting and propose a new algorithm, FTRL-AUC. Our proposed algorithm can process data in an online fashion with a much cheaper per-iteration cost 𝒪(k), making it amenable for high-dimensional sparse streaming data analysis. Our new algorithmic design critically depends on a novel reformulation of the U-statistics AUC objective function as the empirical saddle point reformulation, and the innovative introduction of the "lazy update" rule so that the per-iteration complexity is dramatically reduced from 𝒪(d) to 𝒪(k). Furthermore, FTRL-AUC can inherently capture sparsity more effectively by applying a generalized Follow-The-Regularized-Leader (FTRL) framework. Experiments on real-world datasets demonstrate that FTRL-AUC significantly improves both run time and model sparsity while achieving competitive AUC scores compared with the state-of-the-art methods. Comparison with the online learning method for logistic loss demonstrates that FTRL-AUC achieves higher AUC scores especially when datasets are imbalanced.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro