Operator Learning Framework for Digital Twin and Complex Engineering Systems
With modern computational advancements and statistical analysis methods, machine learning algorithms have become a vital part of engineering modeling. Neural Operator Networks (ONets) is an emerging machine learning algorithm as a "faster surrogate" for approximating solutions to partial differential equations (PDEs) due to their ability to approximate mathematical operators versus the direct approximation of Neural Networks (NN). ONets use the Universal Approximation Theorem to map finite-dimensional inputs to infinite-dimensional space using the branch-trunk architecture, which encodes domain and feature information separately before using a dot product to combine the information. ONets are expected to occupy a vital niche for surrogate modeling in physical systems and Digital Twin (DT) development. Three test cases are evaluated using ONets for operator approximation, including a 1-dimensional ordinary differential equations (ODE), general diffusion system, and convection-diffusion (Burger) system. Solutions for ODE and diffusion systems yield accurate and reliable results (R2>0.95), while solutions for Burger systems need further refinement in the ONet algorithm.
READ FULL TEXT