Opportunistic Synthesis in Reactive Games under Information Asymmetry

06/13/2019
by   Abhishek N. Kulkarni, et al.
0

Reactive synthesis is a class of methods to construct a provably-correct control system, referred to as a robot, with respect to a temporal logic specification in the presence of a dynamic and uncontrollable environment. This is achieved by modeling the interaction between the robot and its environment as a two-player zero-sum game. However, existing reactive synthesis methods assume both players to have complete information, which is not the case in many strategic interactions. In this paper, we use a variant of hypergames to model the interaction between the robot and its environment; which has incomplete information about the specification of the robot. This model allows us to identify a subset of game states from where the robot can leverage the asymmetrical information to achieve a better outcome, which is not possible if both players have symmetrical and complete information. We then introduce a novel method of opportunistic synthesis by defining a Markov Decision Process (MDP) using the hypergame under temporal logic specifications. When the environment plays some stochastic strategy in its perceived sure-winning and sure-losing regions of the game, we show that by following the opportunistic strategy, the robot is ensured to only improve the outcome of the game - measured by satisfaction of sub-specifications - whenever an opportunity becomes available. We demonstrate the correctness and optimality of this method using a robot motion planning example in the presence of an adversary.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro