Optically lightweight tracking of objects around a corner
The observation of objects located in inaccessible regions is a recurring challenge in a wide variety of important applications. Recent work has shown that indirect diffuse light reflections can be used to reconstruct objects and two-dimensional (2D) patterns around a corner. However, these prior methods always require some specialized setup involving either ultrafast detectors or narrowband light sources. Here we show that occluded objects can be tracked in real time using a standard 2D camera and a laser pointer. Unlike previous methods based on the backprojection approach, we formulate the problem in an analysis-by-synthesis sense. By repeatedly simulating light transport through the scene, we determine the set of object parameters that most closely fits the measured intensity distribution. We experimentally demonstrate that this approach is capable of following the translation of unknown objects, and translation and orientation of a known object, in real time.
READ FULL TEXT