Optimal Individualized Decision-Making with Proxies
A common concern when a policymaker draws causal inferences from and makes decisions based on observational data is that the measured covariates are insufficiently rich to account for all sources of confounding, i.e., the standard no confoundedness assumption fails to hold. The recently proposed proximal causal inference framework shows that proxy variables can be leveraged to identify causal effects and therefore facilitate decision-making. Building upon this line of work, we propose a novel optimal individualized treatment regime based on so-called outcome-inducing and treatment-inducing confounding bridges. We then show that the value function of this new optimal treatment regime is superior to that of existing ones in the literature. Theoretical guarantees, including identification, superiority, and excess value bound of the estimated regime, are established. Furthermore, we demonstrate the proposed optimal regime via numerical experiments and a real data application.
READ FULL TEXT