Optimal Learning of Deep Random Networks of Extensive-width

02/01/2023
by   Hugo Cui, et al.
0

We consider the problem of learning a target function corresponding to a deep, extensive-width, non-linear neural network with random Gaussian weights. We consider the asymptotic limit where the number of samples, the input dimension and the network width are proportionally large. We derive a closed-form expression for the Bayes-optimal test error, for regression and classification tasks. We contrast these Bayes-optimal errors with the test errors of ridge regression, kernel and random features regression. We find, in particular, that optimally regularized ridge regression, as well as kernel regression, achieve Bayes-optimal performances, while the logistic loss yields a near-optimal test error for classification. We further show numerically that when the number of samples grows faster than the dimension, ridge and kernel methods become suboptimal, while neural networks achieve test error close to zero from quadratically many samples.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset