Optimistic Optimization for Statistical Model Checking with Regret Bounds

11/04/2019
by   Negin Musavi, et al.
0

We explore application of multi-armed bandit algorithms to statistical model checking (SMC) of Markov chains initialized to a set of states. We observe that model checking problems requiring maximization of probabilities of sets of execution over all choices of the initial states, can be formulated as a multi-armed bandit problem, for appropriate costs and rewards. Therefore, the problem can be solved using multi-fidelity hierarchical optimistic optimization (MFHOO). Bandit algorithms, and MFHOO in particular, give (regret) bounds on the sample efficiency which rely on the smoothness and the near-optimality dimension of the objective function, and are a new addition to the existing types of bounds in the SMC literature. We present a new SMC tool—HooVer—built on these principles and our experiments suggest that: Compared with exact probabilistic model checking tools like Storm, HooVer scales better; compared with the statistical model checking tool PlasmaLab, HooVer can require much less data to achieve comparable results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset