Optimized Power Normalized Cepstral Coefficients towards Robust Deep Speaker Verification
After their introduction to robust speech recognition, power normalized cepstral coefficient (PNCC) features were successfully adopted to other tasks, including speaker verification. However, as a feature extractor with long-term operations on the power spectrogram, its temporal processing and amplitude scaling steps dedicated on environmental compensation may be redundant. Further, they might suppress intrinsic speaker variations that are useful for speaker verification based on deep neural networks (DNN). Therefore, in this study, we revisit and optimize PNCCs by ablating its medium-time processor and by introducing channel energy normalization. Experimental results with a DNN-based speaker verification system indicate substantial improvement over baseline PNCCs on both in-domain and cross-domain scenarios, reflected by relatively 5.8 VoxMovies, respectively.
READ FULL TEXT