Overdetermined independent vector analysis
We address the convolutive blind source separation problem for the (over-)determined case where (i) the number of nonstationary target-sources K is less than that of microphones M, and (ii) there are up to M - K stationary Gaussian noises that need not to be extracted. Independent vector analysis (IVA) can solve the problem by separating into M sources and selecting the top K highly nonstationary signals among them, but this approach suffers from a waste of computation especially when K ≪ M. Channel reductions in preprocessing of IVA by, e.g., principle component analysis have the risk of removing the target signals. We here extend IVA to resolve these issues. One such extension has been attained by assuming the orthogonality constraint (OC) that the sample correlation between the target and noise signals is to be zero. The proposed IVA, on the other hand, does not rely on OC and exploits only the independence between sources and the stationarity of the noises. This enables us to develop several efficient algorithms based on block coordinate descent methods with a problem specific acceleration. We clarify that one such algorithm exactly coincides with the conventional IVA with OC, and also explain that the other newly developed algorithms are faster than it. Experimental results show the improved computational load of the new algorithms compared to the conventional methods. In particular, a new algorithm specialized for K = 1 outperforms the others.
READ FULL TEXT