Paired Image to Image Translation for Strikethrough Removal From Handwritten Words
Transcribing struck-through, handwritten words, for example for the purpose of genetic criticism, can pose a challenge to both humans and machines, due to the obstructive properties of the superimposed strokes. This paper investigates the use of paired image to image translation approaches to remove strikethrough strokes from handwritten words. Four different neural network architectures are examined, ranging from a few simple convolutional layers to deeper ones, employing Dense blocks. Experimental results, obtained from one synthetic and one genuine paired strikethrough dataset, confirm that the proposed paired models outperform the CycleGAN-based state of the art, while using less than a sixth of the trainable parameters.
READ FULL TEXT